This month’s Nature methods (part 2): optogenetics

Optogenetic tools are light-sensitive genetically encoded proteins that, upon light activation, affect a molecular change in the cells. In the previous post I described an optogenetic system to induce transcription. However, the most common use is of channelrhodopsin (ChR) molecules, that alter ion homeostasis upon illumination, and when expressed in neurons, can affect neuronal activity and – in live animals – a change in behavior.

Though optogenetics were used extensively in neurons in culture or in mice, its use was limited in flies. The reason was that the most common ChRs are activated by blue light, which does not penetrate well into the brains of live flies. Therefore, theremogenetic control has been used. In thermogenetics, a thermosensitive channel is expressed in the neurons. However, theremogenetics is far less accurate than optogenetics in terms of temporal resolution and intensity. On top of that, one needs to consider the effect of changes in heat on behavior.

To overcome that, the group of David Anderson decided to use a newly developed red-shifter ChR, ReaChr.

Using ReaChr, but not other Chrs, the researchers were able to activate specific neurons and alter fly behavior. Here’s one of their videos. Using this tool, they learned about the sexual behavior of the male fly and came to the conclusion that there are two sets of neurons which can be separated, with social experience affecting only one set of neurons.

The second optogenetic paper in this issue is more technical. The group of Edward Boyden decided to screen for new candidate ChRs in over 100 species of alga. They sequenced transcriptomes of 127 alga species and isolated 61 candidate ChRs which they tested for light-induced currents using electrophysiology methods. They chose 20 candidates and tested them in a range of wavelength excitations looking at current maxima, kinetics and more parameters.

characteristics of selected channelrhodopsins from different alga species. A, B, C, D - currents amplitude at different excitation wavelengths in HEK293 (A-C) and neurons (D).  E - Chrimson is the most red-shifted ChR. F - off kinetics. G - on-kinetics. H - recovery kinetics.

characteristics of selected channelrhodopsins from different alga species. A, B, C, D – currents amplitude at different excitation wavelengths in HEK293 (A-C) and neurons (D). E – Chrimson is the most red-shifted ChR. F – off kinetics. G – on-kinetics. H – recovery kinetics. Source: Klapoetke et. al. (2014) Nat. Meth. 11:338-346.

Of these, they selected two unique ChR: Chronos (with very high activity after blue or green light excitation) and Chrimson (the most red-shifted ChR – 45nm more red-shifted than ReaChR). After further characterization they showed that Chrimson is a good optogenetic tool for live flies and showed that they can stimulate neurons in fly brains.

Last, they created a two-color system. One of the limitations of the current ChRs is that all of them can be stimulated to some extent by blue light. Although Chrimson can be activate by blue light, the kinetics of Chronos are 10 fold faster. They did a very detailed work in finding the best conditions for a two-color system, based on the excitation pulse and power as well as expression level of the different ChRs.

All in all, a very nice work.

 

 
ResearchBlogging.orgKlapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian Z, Wang J, Xie Y, Yan Z, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GK, & Boyden ES (2014). Independent optical excitation of distinct neural populations. Nature methods, 11 (3), 338-46 PMID: 24509633
Inagaki HK, Jung Y, Hoopfer ED, Wong AM, Mishra N, Lin JY, Tsien RY, & Anderson DJ (2014). Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nature methods, 11 (3), 325-32 PMID: 24363022
 

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s