Tag Archives: EYFP

New and improved – the next generation of GFP?

A new and improved green fluorescent protein, named mNeonGreen, was developed.

It was engineered from a Yellow fluorescent protein (LanYFP) that was isolated from the cephalochordate Branchiostoma lanceolatum. Therefore, LanYFP is genetically unrelated to the commonly used Aequorea victoria GFP.

LanYFP has a high quantum yield (0.95) and extinction coefficient (~150,000 M−1 cm−1) – making it a very bright protein.  LanYFP is a tetramer – not useful for most applications.

Directed evolution to make it a monomer produced the new, monomeric protein, mNeonGreen. The ex/em of mNeonGreen is slightly shifted to the yellow compared to EGFP (509/516 compared to 488/509), making it a better choice to separate from CFP emission.

Though slightly less brighter than its parent protein LanYFP, mNeonGFP is 2-3 times brighter than EGFP and actually brighter than most green & yellow proteins.

Another great advantage of this new protein is that is it fast folding – the authors claim it is <10 min at 37C. This is fairly close to the superfolder GFP.

It is also very photostable (comparable to EGFP), performs well as a fusion construct at N & C termini many tested proteins, performs 4-times better that EGFP in stochastic single-molecule superresolution imaging and is a better FRET partner (both as acceptor and donor) than other proteins.

mNeonGreen fused to histone H2B shows the different stages of the chromosomes during cell division. Source: Shaner et al., (2013) Nature Methods 10:407-409.

mNeonGreen fused to histone H2B shows the different stages of the chromosomes during cell division. Source: Shaner et al., (2013) Nature Methods 10:407-409.

In short, this may very well be the “next generation” of fluorescent proteins. It has all the good qualities, and seems to have none of the bad ones. It performs better than most, if not all fluorescent proteins in every tested parameter.

Only its name is rather plain. I would call it something like wonderGFP or GreenLantern (hey, it even has the Lan from the animal they developed it from).

(Update: see here for details on how to get your hands on this protein).

ResearchBlogging.orgShaner NC, Lambert GG, Chammas A, Ni Y, Cranfill PJ, Baird MA, Sell BR, Allen JR, Day RN, Israelsson M, Davidson MW, & Wang J (2013). A bright monomeric green fluorescent protein derived from Branchiostoma lanceolatum. Nature methods, 10, 407-409 PMID: 23524392

Advertisements

Folding and maturation, or how to evolve your own GFP (part 2)

In part 1 I discussed the directed evolution of fast-folding GFPs. These were developed for specific purposes of improving the solubility, stability and folding of the protein. Now, I will discuss the maturation step and how it was measured for a variety of GFPs.

As mentioned in the first part, maturation is the final step in the transformation of GFP from a chain of amino acids to a fluorescent protein – the creation of the chromofore. The chromofore has a very long name (p-hydroxybenzylideneimidazolidone) which in wild type  GFP is formed from amino acids S65, Y66 and G67. In this process, the amide nitrogen of G67 backbone performs a nucleophilic attack on the carbonyl carbon of S65. Oxidation with atmospheric O2 and dehydration reactions create the imidazolinone ring, which is conjugated to the side chain of Y66.

In most papers that measure GFP maturation, the authors do not distinguish folding from maturation. In many cases, the experiments involve complete denaturation of the protein in vitro (e.g. by urea or guanidinium chloride) and then measuring fluorescence following re-folding. In vivo, it would be difficult to assess folding kinetics (because you do not really have an exact time zero for when the protein is being translated).  [In our lab, we are trying to develop a system to visualize translation in vivo in real time by imaging techniques.  If it works, it would be useful for determining exact folding & maturation rates in vivo of a single fluorescent protein].

In any case, it is easier to measure the kinetics of the maturation step, both in vivo and in vitro, simply by removing and adding oxygen. I mentioned in part 1 that this is how the maturation rate of GFP-S65 was calculated in vivo.  A new paper from 2011 from the lab of Funatsu analyzed the maturation rates of several GFPs in vitro. Their idea was simple – using a commercial kit, the performed in vitro transcription-translation reaction of the FPs at anaerobic conditions (they added catalase and glucose oxidase to get 0.1mg/l of oxygen). They then stopped the reaction and added oxygen, then followed fluorescence.

The proteins they assayed were: wild-type GFP, GFP-S65T, GFP-S65T/S147P, EGFP, sfGFP, Emerald, GFPm, GFPmut2, GFPmut3, sgGFP, “cycle 3”(a.k.a GFPuv), frGFP (a.k.a GFPuv3), GFPuv4 and 5 and two yellow FPs: EYFP and Venus..

Their results are interesting. As expected, the S65T mutation improved the maturation rate by 3.2 fold. However, EGFP matured only 20% faster than the S65T alone. The S65T/S147P is a variant that is stable under a range of temperatures. This mutant matured faster than EGFP, at a rate 40% faster than S65T alone. GFPmut2 and GFPmut3 (S65G/S72A) both showed a 7-fold faster maturation than WT GFP (>2-fold the S65T alone). sgGFP (SuperGloGFP, F64L/S65C/I167T, from Qbiogene) showed improved maturation rate compared to S65T (70%  faster).  Emerald, which contains 4 mutations on top of the EGFP mutations showed only a slight increase in maturation rate (similar to S65T/S147P). “cycle 3” was only slightly better than WT GFP, frGFP (which is cycle 3 +EGFP mutations combined) showed a maturation rate which was 10% less than EGFP.  Addition of the I167T mutation to create GFPuv5 increased the maturation rate by ~70% (just like in sgGFP).

Most interesting is the super-folder GFP (sfGFP), which showed a maturation rate of only 2.3-fold over the WT (that is ~70% of that of S65T). Thus, though this protein may be more stable and may fold very fast compared to other variants, the important step of maturation is the slowest among all variants tested (except the WT). Since folding assays measure fluorescence as the output for a mature protein, it means that the folding step (prior to maturation) is much faster than previously appreciated.

GFPm is a weird case.  GFPm, developed by David Tirrell, is a variant with mutations from cycle 3 and GFPmut3. However, Tirrell tried something unique –  to replace the leucines in the protein with 5,5,5- tri-fluoroleucine (tfl). The fluoreinated form proved to be insoluble, and fluorescent of the cells (E. coli) was 500-fold less than the regular protein. They then went on with mutagenesis, developing new variants which were brighter (up to 650-fold over GFPm). Personally, I do not understand how this can be of much use, since using tfl will probably have major effects on every aspect of cell biology we are interested in. Anyway, the maturation rate of GFPm (not fluoreinated) is itself pretty high – almost 3-fold over S65T and is actually the fastest maturing GFP variant tested. Oddly, they do not discuss this result anywhere in the text. Perhaps there is a technical issue they wanted to avoid?

Last but not least, the two YFPs showed maturation rates which are similar to WT GFP (Venus) or ~2.3-fold better (EYFP).

So how does all this information help us?

First, if we know which mutations enhance maturation and which slow it down, we can design faster-maturing proteins.

Second, we can use this data to estimate translation or translocation rates in vivo. However, we should remember that the data obtained in vitro (at 37C) does not neccessarily agree with actual maturation rates in vivo in every cell type. for instance, yeast or fly grow in colder temperatures which may affect maturation. Oxygen levels in tissue culture dish are differnt than in entire animals, and also differnt in differnt organs.  Also, if the GFP is fused to another protein, it may also affect folding as we learned in part 1, as well as maturation. Finally, the in vitro environment in the tube lacks many biomolecules (proteins other than used for translation, small molecules, ions, oxidizing molecules, antioxidants etc) which can affect oxygen availability in the immediate environment of the newly translated GFP.

Third, we can use such data to design cool experiments. So… stay tuned for part 3, which I will dedicate to biological timers.

ResearchBlogging.orgIizuka R, Yamagishi-Shirasaki M, & Funatsu T (2011). Kinetic study of de novo chromophore maturation of fluorescent proteins. Analytical biochemistry, 414 (2), 173-8 PMID: 21459075
Yoo TH, Link AJ, & Tirrell DA (2007). Evolution of a fluorinated green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 104 (35), 13887-90 PMID: 17717085