Tag Archives: FISEB

FISEB 2014 – day 3

Not a lot to say. The morning session on “life science policy & research funding in Israel” was somewhat informative, but too much policy discussion and not a lot of practical info.

Next was the oral poster session on genomic and transcriptomic regulation.  Can’t discuss it much since most is unpublished work. But most lectures were interesting. My lecture was very successful. Got a lot of interest. Am happy about it.

The last session was actually a panel of university presidents/rectors etc with us – the postdocs that were invited, as the next generation of young faculty members.

It was a very nice gesture but again, I was hoping for a more practical meeting. They did share some good advice on some subjects.

After that was the poster session. Very interesting work by Roee Amit from Technion on transcription imaging in bacteria. Not ready for publication yet but stay tuned. As usual, the lab of Yaron Shav-tal produces nice imaging on transcription. They are also developing something nice with the MS2 system which caused me to say “me wants” immediately. Again, can’t discuss till its published.

In the last post, I forgot to mention the plenary lecture of David Bartel. Quite insightful about miRNAs and poly-A tails. I should go read some of his latest papers.

FISEB 2014 – day 2

Due to crappy Wi-Fi at hotel, this entry will be short. I’ll try to expand once I get back home.

Anyway, today was very interesting.

At the “early bird” session, I heard about CyTOF. Essentially, instead of using a few fluorescent markers for FACS sorting of different cell types, they offer conjugating the tagging antibodies with rare heavy metal isotopes. they claim that these are not found in cells, so the background should be zero. They have >30 different isotopes they can use, and the detection is by mass spectrometry – so very accurate and distinct identification.

Next was a session on gene expression. I won’t go into details, particularly since much is unpublished yet, but Tzachi Pilpel’s talk was amazing. Who knew tRNA may have anything to do with cancer research?

As per usual, Orna Amster-Choder talked about RNA localization in bacteria with lovely images and great data.

Jeff Gerst from Weizmann discovered a possible new mechanism of mRNA transport in yeast, using the MS2 system in very neat ways.

The next session, called “oral poster 1”  featured short talks. The most interesting to me were about mRNA methylation and about how the DNA sequence surrounding consensus sequence for DNA binding proteins affects this binding. some nice insights.

The last session I attended was about the effect of tumor microenvironment on tumor progression and treatments. Heard some amazing stories. Hope still exist to cure cancer…

Tomorrow is my lecture. Excitement!

FISEB 2014 meeting -day 1

FISEB meeting happens every three years, and it includes participants from 28 different experimental biology societies in Israel. It is the best meeting to learn about biological-medical research performed in Israel at all fields and doctrines.

4 days, 8-10 parallel sessions, hundreds of lectures, >1000 posters, >2200 participants.

The first day started by a plenary lecture by Aryeh Warshel, Nobel lauret. He is really far from my field, and his lecture was very much confusing to me. But he has nice cartoons 🙂 The bottom line – enzymes are able to catalyze reactions due to electrostatic connections that are maintained stable (unlike in water).

From the afternoon sessions, I chose “signaling pathways & networks”. Relevant to this blog:

Yoav Henis from Tel-Aviv Uni. talked about oligomerization of TGF-beta receptors. he used a method he calls “co-patching”, which is essentially IF with two different antibodies for two receptor subunits. homodimerization will yield single color “patch” whereas heterodimerization will yield an overlap of both colors (co-patch). He then looked at the % of co-patch with different receptor subunits with/without ligand, or with mutants.

Maya Schulinder from Weizmann Institute talked about the contacts between mitochondria and other organelles (ER, vacuole) in yeast. These contacts are important for lipid metabolism. She new about the mito-ER contact but found there must be a second contact (bypass mechanism). She used an interesting screen method to find the bypass mechanism to the mito-ER contact: she expressed one of the contact protein as a GFP fusion. She expected that if the bypass mechanism and the mito-ER contact “share the load” of lipid metabolism, then deletion of the bypass will increase the number of the mito-ER contacts to compensate. Using automation, she imaged 6200 deletion mutants (from the yeast deletion library) each expressing this GFP fusion. As expected, she found 4 candidates which turned out to be very interesting.

Roni Seger from Weizmann showed that targeting the nuclear localization signal of ERK can be a novel cure for certain pathologies, including certain types of cancer.

On the other hand, Maya Zigler from the Hebrew Uni. suggested another new idea to cure cancer – by inducing the surrounding immune cells to destroy the tumor.

Ido Amit from Weizmann as well told us that we may not really know all the different types of cells that exist. What most people do, particularly in immunology, is rely on one or two known “markers” and use FACS or other methods to sort the cells based on these markers. However, some of the markers overlap. and there may be cells for which we do not have any markers and they “disappear” in the crowd of unsorted cells. or, the could be further sub-types we do not know about. So he approached the problem in an unbiased way – he took all the cells in the spleen, and did single cell RNA seq to individual cells from the spleen. Thus, each cell type has several hundred/thousand “markers” based on gene expression profiles. Not only did this method agree with the common FACS sorting markers, but he identified several sub-types unknown before.  Expect his paper this month in Science. His paper just got published in Science.

Finally, Yaron Shav-tal from Bar-Ilan Uni. used the MS2 system to study how perturbing the signaling pathway of serum stimulation affects transcription of beta-actin gene. As per usual – very neat job and interesting results.