Tag Archives: Suntag

Imaging translation of single mRNAs in live cells

Translating the information encoded in mRNAs into proteins is one of the most basic processes in biology. The mechanism requires a machinery (i.e. ribosomes) and components (mRNA template, charged tRNAs, regulatory factors, energy) that are shared by all organisms on Earth. We’ve learned a great deal about translation over the last century. We know how it works, how it is being regulated at many levels and under varuious conditions. We know the structures of the components. We have drugs that can inhibit translation. With the emergance of next-gen sequencing, we can now perform ribosome profiling and determine exatly which mRNAs are being translated, how many ribosomes occupay each mRNA species and where these ribosomes “sit” on the mRNA, on average. New biochemical approaches like SILAC and PUNCH-P can quantifiy newly synthesized proteins & peptides. Yet, all of that information comes from population studies, typically whole cell populations. Rarely, whole transcriptome/ribosome analysis of a single cell is performed. Still, there is no dynamic information of translation, since cells are fixed and/or lysed. And there is no spatial information regarding where in the cell translation occurs (poor spatial information can be determined if cell fractionation is performed, which is never a perfect separation of organelles/regions and we are still not at the stage of single organelle sequencing).

Imaging translation in single cells is intended to provide both spatial and dynamic information on translation at the single cell and, hopefully, single mRNA molecule resolution. Recently, four papers were published (on the same day!) providing information on translation of single mRNAs. Here is a summary of these papers.

Continue reading