Tag Archives: Chicken

Cells reach out their “hands” to create new limbs

Communication between cells takes many forms. There could be communication by sending out microvesicles with important messages inside, by sending out free molecules (like hormones) or by special structures (e.g. synapses).

Sonic hedgehog (SHH) is a signaling protein that is important for the development of vertebrate limbs. It was thought to be release from a small group of cells at the posterior end of the limb bud, and is recognized by receptors on cells a long distance away.

Not this Sonic Hedgehog… (image taken from http://sonic.wikia.com)

A new paper publish in Nature from Maria Barna’s lab shows that SHH actually remains bound on the external side of the cells that produce it. The cells simply send very long thin protrusions (here named filopodia) that reach all the way to similar filopodia of the receiving cells.

I think that not only the story is very novel and interesting, but the images are very pretty.

Several “technical” issues:

In order to study the SHH signaling in live chick embryos, they designed a custom made live in ovo microscopy system: a temperature controlled plate; on it an egg container chamber, and an objective that is dipping into the yoke.

They show that standard fixation methods (e.g formaldehyde) destroy these filopodia. Also, a volume marker (in this case sfGFP) that just fills the cytoplasm does not give a strong enough signal to detect these filopodia (possibly since they are very thin, and packed with actin filaments  and other proteins, so there’s very little free volume left).

So, they used palmitoylated fluorescent proteins, pmeGFP (green) and pmKate2 (red) that target them to the plasma membrane. This enabled them to visualize these very thin and long filopodia. Here’s a video movie from their paper.

They use a variety of cytoskeletal proteins fused to EGFP or to mKate2 to learn about the structure of these filopodia. Their conclusion is that these structures contain only a specialized form of actin filaments.

They show beautifully that SHH (fused to EGFP) travels to the tip of these filopodia:

They used a split GFP technology to show that SHH is actually found on the outside of the cell membrane.  In split GFP, two fusion proteins are produced, each one is fused to “half” of a GFP protein (its not exactly half but let not go into that now). If the two fused proteins are in close proximity, the two halves associate to produce an GFP that fluoresce irreversibly. The two separate halves do no fluoresce. So one half was fused to SHH and the other was anchored to the extracellular leaflet of the plasma membrane, and when both were expressed, they got green fluorescence.

In total – a very nice and pretty paper.
ResearchBlogging.orgSanders TA, Llagostera E, & Barna M (2013). Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature, 497 (7451), 628-32 PMID: 23624372